Одним из источников информации для анализа выгодности инвестиций могут служить доходности по государственным облигациям с разными сроками до погашения. Однако непосредственному использованию этих доходностей мешает то обстоятельство, что облигации редко бывают бескупонными. Поскольку выплаты по облигации делаются в разные сроки, цена облигации представляет собой сумму нелинейных слагаемых со ставками, относящимися к разным срокам до погашения. Проблема получения бескупонных доходностей по данным о ценах облигаций наиболее остро стоит для рынков, подобных российскому, где объемы торговли не столь большие и сделки происходят не очень часто.
В статье предлагается сравнительно простой в реализации метод построения параметрической кривой бескупонной доходности по данным о ценах, в котором параметры кривой и волатильность случайных возмущений предполагаются меняющимися во времени, причем распределение случайных возмущений имеет толстые хвосты. Метод основан на модификации классического фильтра Калмана за счет использования скор-вектора уравнения измерения и соответствующей информационной матрицы. Наиболее близкие аналоги предложенного метода – это подходы GAS (generalized autoregressive score) и DSC (dynamic conditional score). Метод не требователен к исходным данным, поскольку является робастным к выбросам. Оценки кривой процентных ставок получаются адаптивным образом, с учетом текущей рыночной ситуации. Работоспособность метода проверена на данных о рынке российских государственных облигаций за период с января 2008 г. по апрель 2015 г. Получены оценки параметров динамической кривой Нельсона – Сигеля за этот период.