Редакция 117418, Москва, ул. Профсоюзная, д. 33, корп. 4, НИУ ВШЭ, каб. 404. Тел.: (495) 772-95-90 доб. 11874. e-mail: redact@hse.ru
Издатель и распространитель 117418, Москва, ул. Профсоюзная, д. 33, корп. 4, Издательский дом Высшей школы экономики. Тел: (495) 772-95-90 доб. 15298; e-mail: id.hse@mail.ru
Модели для временных рядов имеют большое значение для рынка акций. Нечеткие модели Такаги – Сугено (функциональные нечеткие системы) – это перспективный и уже достаточно распространенный подход, при котором для различных областей изменения тех или иных параметров используются различные регрессионные зависимости и производится мягкое переключение за счет применения правил нечеткой логики. В этом состоит преимущество данного подхода перед обычными стохастическими моделями. Каждая модель Такаги – Сугено основывается на своей базе нечетких правил. Эти модели можно рассматривать как обобщение классических эконометрических моделей, если считать, что одному нечеткому правилу соответствует одна такая модель. В настоящей работе исследуется возможность совместного применения вейвлет-преобразования и нечеткой модели Такаги – Сугено для анализа цен акций на примере следующих российских компаний: Газпром, Сбербанк, Магнит, Яндекс и Аэрофлот; такой подход применялся ранее для изучения некоторых зарубежных рынков акций. Вейвлет-анализ достаточно часто выступает в качестве инструмента для обработки сигналов, в том числе и временных рядов, так как дает возможность провести многоуровневую аппроксимацию. В настоящей работе строится модель Такаги – Сугено на непреобразованных данных и данных, подвергшихся преобразованиям с использованием вейвлетов Хаара. Для построения функций принадлежности применяется нечеткая кластеризация. Расчеты показывают, что применение вейвлетов достаточно часто позволяет улучшить прогнозные характеристики модели.